Wenn wir Elektronen auf einer Kreisbahn beobachten, wissen wir:

F_t =
$$m \frac{v^2}{r}$$
 = $e \cdot v \cdot B$ = F_c

lid: $m \text{ berechnen}$; $r \cdot B \text{ messbar}$, $e = 1.6 \cdot 10^{-13} \text{ C}$

1. Problem: $v \stackrel{?}{\cdot}$ $e \stackrel{?}{\cdot} = \frac{1}{2} m v^2$ (in beschl. elektr. Fell.)

 $v = \sqrt{\frac{2e \stackrel{?}{\cdot} u_a}{m}}$ $u_a = \frac{8eschl. - 8p}{eschl. - 8p}$
 $m = \frac{e^2 \stackrel{?}{\cdot} v^2}{2e \stackrel{?}{\cdot} u_a} = \frac{e \stackrel{?}{\cdot} R^2 v^2}{2e$

e Berechne
$$x$$
 $x = 7,79.10^{-6} \frac{T.m.Am}{A \cdot v.s}$
Helmholtz-Sput Windungszahl maximaler Sput Windungszahl

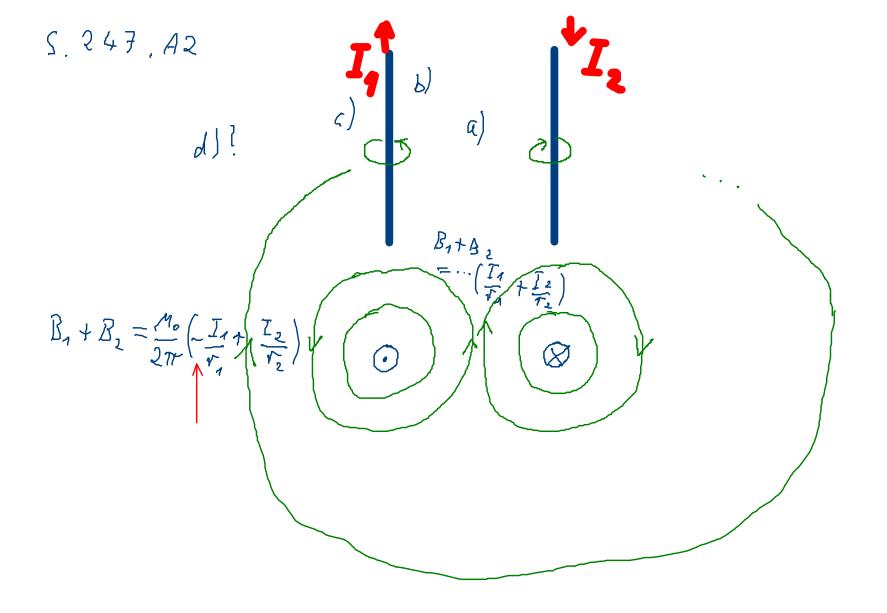
· Tabelle

U_a in V	d in cm	r in m	I in A	B in T	m in kg	Mittelwert	Literaturwert	
150,41	6	0,030	2,00	1,56E-03	1,16E-30	1,06E-30	9,10E-31	
150,41	7,8	0,039	1,50	1,17E-03	1,10E-30			
150,41	10,5	0,053	1,00	7,79E-04	8,90E-31	relativer Fehle	r = (m_Exp-m	_Lit)/m_Lit =
153,08	4,5	0,023	2,50	1,95E-03	1,00E-30	1,62E-01		
211,82	8,5	0,043	1,50	1,17E-03	9,31E-31			
211,82	6,5	0,033	2,00	1,56E-03	9,68E-31			
211,82	5	0,025	3,00	2,34E-03	1,29E-30			
280	10	0,050	1,50	1,17E-03	9,75E-31			
280	8	0,040	2,00	1,56E-03	1,11E-30			
280	6,5	0,033	2,50	1,95E-03	1,14E-30			

2.2 Helmholtz-Spulen mit Ständer und Meßvorrichtung

2 A (kurzzeitig 3 A) ca. 2 Ω, ie Spule Spulenradius 150 mm Spulenabstand:

Abhängigkeit des Magnetfelds B vom Spulenstrom I


$$B = \mu_0 \cdot \left(\frac{4}{5}\right)^{\frac{3}{2}} \cdot \frac{n}{R} \cdot I$$

 $\mu_0 = 4\pi \cdot 10^{-7} \frac{\text{Vs}}{\text{Am}}$: magnetische Feldkonstante

R: Spulenradius

n: Windungszahl = 130 je Spule

=
$$\times$$
 1

Plattenkondensator, E-Feld

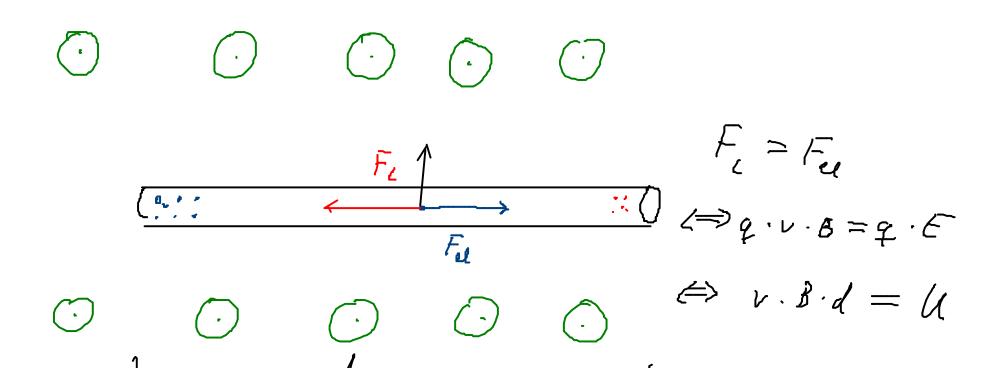
- Flachen ladungsclichte

- (
$$\sigma =$$
) $\frac{Q}{A} \sim E \Rightarrow \frac{Q}{A} = E_o E$

+
- el. Feld: $\frac{E}{Q} = E$

U= E-d

[C] = 1F (Farad)


Arbeit:
$$W = F \cdot d = q \cdot E \cdot d$$

$$Kapazität: C = \frac{Q}{U}$$
 [$Cu = Q$]

tel. Feldkonst.

$$[U] = 1V = 1\frac{1}{C}$$
bein Pla Henkond:
$$= \frac{Q}{E \cdot d} = \frac{Q}{Q \cdot d} = \frac{A}{d}$$

$$[Q] = 1C ((Coulomb))$$

