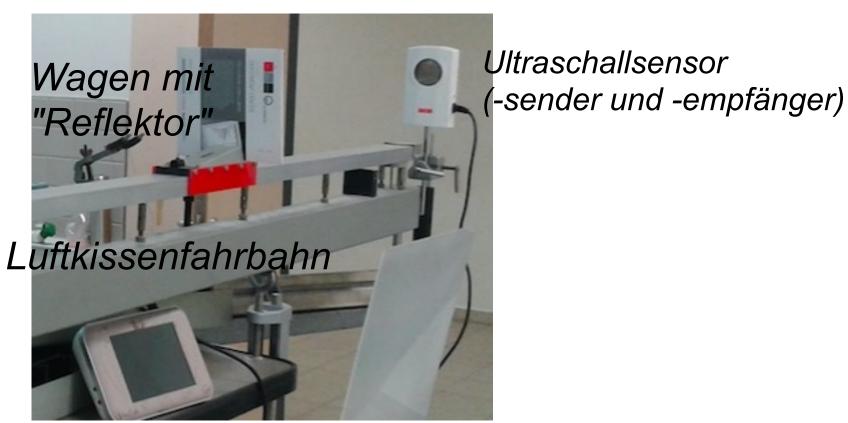
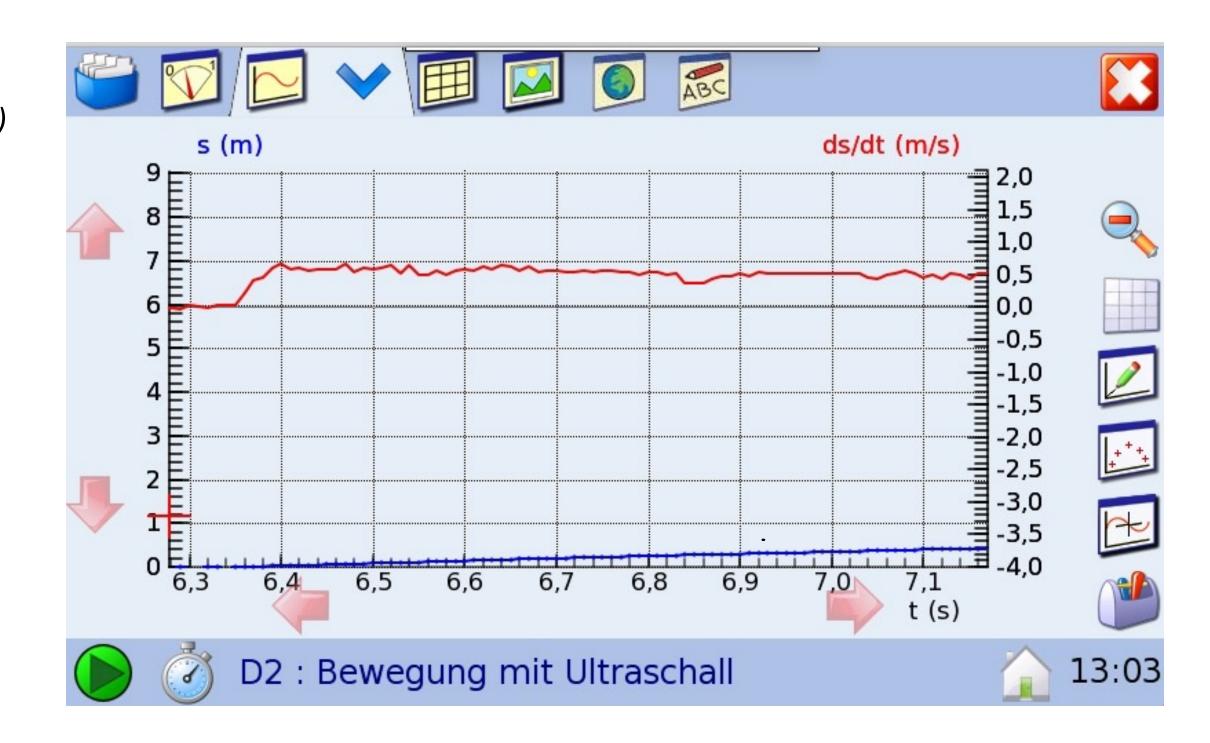
EF Ph G1 2016/17

Wdh./Ausblicke


physikalische Größe	Formelzeichen	Definition '	Maßeinheit	Abkürzung
Strong Starke	Ī		Ampere	A
Widerstond	R	$R \simeq \frac{\mathcal{L}}{7}$	Ohm	\mathcal{L}
Spannung	U	<u> </u>	Volt	V
Kraft	F		Newton	· N
Masse	M		Kilogramm	k g
Orts faktor (Erdbesch)	9	g = 9,81 %	_	$\frac{N}{1} = \frac{m}{1}$
Gewichtskraft	(in manchen G Büchern G)	F = m·g	Ne n don	kg = 52
Dichke	e		Kilogramm	1kg
Donck	ב כ <i>ו</i>		K is his how often	1 kg W
Energie	E (manchmal W)	$\begin{vmatrix} P = 1 \\ A \end{vmatrix}$	Pascal	$ \begin{cases} $
Arbeit	\mathcal{N}	W=F.S	Jo we	} 1 J
Leishing	P	[[] = u []	Watt	$1 W = 1 \frac{1}{5}$
Zut	t	P=W	Se kun de	1 s
Lange, Strecke	l,5		Meter	1 m
beschwindigknit	l,5 v(c)	$V = \frac{dS}{dt}$	Meter Sekuda	1 m/s = 3,6 kg

$$\overline{L} = \frac{L}{R} \iff U = R \cdot \overline{L}$$


$$1 N = \frac{1 m_s}{n_s} \cdot 1 k_s = 1 k_s \frac{m_s}{s^2}$$

$$\iff 1 \frac{N}{k_s} = 1 \frac{m}{s^2}$$

v-Messung mit VinciLab

Messinterface VinciLab

Um die Momentangeschwindigkeit zu bestimmen, muss der in einem möglichst kleinen Zeitintervall dt zurückgelegte Weg ds gemessen werden: v = ds/dt ("v ist die Ableitung des Weges nach der Zeit.")

gleichförmige Bewegung:

```
v = konst.
```

s-t-Diagramm stellt eine Gerade dar (wenn zum Zeitpunkt t = 0 auch s = 0 war, eine Ursprungsgerade) Bewegungsgesetz: $s(t) = v \cdot t$ (+ s_0 , wenn bei t = 0 ein Abstand zum s-Nullpunkt bestand)

gleichmäßig beschleunigte Bewegung:

a = dv/dt = konst. ("konstante Beschleunigung")

v-t-Diagramm stellt eine Gerade dar

s-t-Diagramm stellt eine Parabel dar

Bewegungsgesetz: $s(t) = 1/2 \cdot a \cdot t^2$

 $(+ v_0 \cdot t + s_0$, wenn weder v noch s zum Zeitpkt. t=0 Null waren)