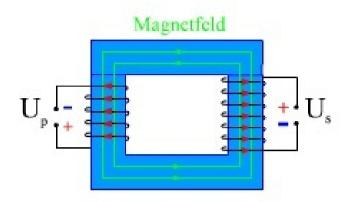
Der Transformator

Ein in der Primärspule fließender Wechselstrom I(t) ruft in beiden Spulen den gleichen zeitlich veränderlichen magnetischen Fluss hervor. Für die Spannungen gilt:

$$U_{P} = -N_{P} \cdot \phi$$

$$U_{S} = -N_{S} \cdot \phi$$


Das Verhältnis der Spannungen liefert das sog. Transformatorgesetz:

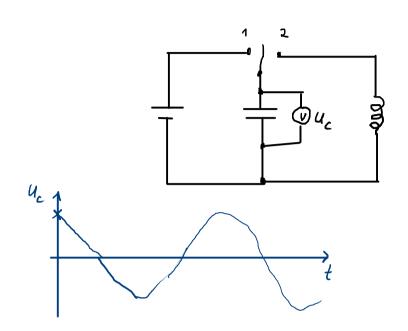
$$\Rightarrow \frac{U_{P}}{U_{S}} = \frac{N_{P}}{N_{S}}$$

$$\Leftrightarrow U_s = U_P - \frac{N_S}{N_P}$$

Nimmt man an, dass die Leistung im Primärkreis vollständig auf den Sekundärkreis übertragen wird, ergibt sich für das Verhältnis der Stromstärken:

$$\begin{array}{l}
P_{P} = U_{P} T_{P} = U_{S} T_{S} = P_{S} \\
\Rightarrow \frac{I_{S}}{T_{P}} = \frac{U_{P}}{U_{S}} \\
\Rightarrow \frac{I_{S}}{T_{P}} = \frac{N_{P}}{N_{S}}
\end{array}$$

Anwendungsbeispiele:

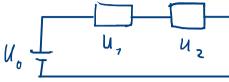

$$U_p = 230 V$$
, $N_p = 500$, $N_s = 23000$

 $V_s = 230.46 V = 10580 V$

Stromverstärkung

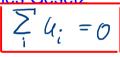
$$U_{p} = 230V$$
, $N_{p} = 500$, $N_{s} = 5$

$$U_{s} = 230V \cdot \frac{5}{500} = 2.3V$$


$$I_{s} = I_{p} \cdot \frac{500}{5} \approx 200A$$

t = 0 Man schalte von 1 nach 2: Was passiert bei Schalterstellung 2? Skizziere den U_c(t)-Graphen!

Der elektrische Schwingkreis Herleitung der Thomsonschen Schwingungsgleichung


In einer Reihenschaltung ist die Summe aller Verbraucherspannungen gleich der Spannung der Quelle:

Allgemein gilt:

In einem Umlauf ("Masche") einer elektrischen Schaltung (eines "elektrischen Netzwerkes") ist die Summe aller Spannungen Null, wobei die Spannung der Quelle negativ gezählt wird.

Maschensatz (Maschenregel) - 2. Kirchhoffsches Gesetz

Für den Schwingkreis heißt das:

$$\Leftrightarrow \frac{Q}{C} = LI$$
 | Ableity

$$\vec{I} = -\frac{1}{L_C} \cdot \vec{I}$$
 D61

Das bedeutet:
Wir suchen eine Funktion, deren 2. Ableitung proportional zur Funktion selbst ist. Intuition!

$$\underline{T}(t) = \underline{\hat{T}} \cdot \sin(\omega \cdot t)$$

$$\omega = \frac{2\pi}{T}$$

$$\omega = \frac{2\pi}{T} \qquad \int_{0}^{\infty} \int_{0}^{\infty} = Maximal vet$$

$$\Rightarrow \tilde{l} = \tilde{l} \cdot \omega \cdot \omega \cdot (\omega \cdot t)$$

$$\Rightarrow \ddot{1} = -\dot{1} \cdot \omega^2 \cdot \sin(\omega t) = -\omega^2 I$$

Die "geratene" Funktion I(t) erfüllt die DGL, wenn

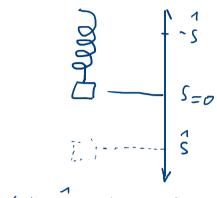
$$\omega^2 = \frac{1}{100}$$

$$2\pi f = \frac{2\pi}{T} = \omega = \sqrt{\frac{1}{LC}}$$

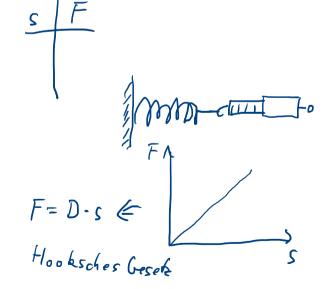
Thomsonsche Schwingungsgleichung

Berechne f für C = 1 mF und L = 500 H! $f = 0.22 H_{2}$

$$\frac{3}{3} T = 14,645 - 6,35 = 8,345 \Rightarrow \overline{1} = 5,565 \Rightarrow f = 0,18 H_2$$


$$C = 22 \mu F / L = 500 H : f = 1,52 H_2$$

$$T=0.72$$
 $\Rightarrow f=1.38 H_{+}$


Pico	10 -12
hano	16-9
mikro	10-6
milli	10-3
kilo	103
Mes e	106
Gija	109
Tera	10 12
Peta	1015

Analogien zwischen elektrischer und mechanischer Schwingung

Schwingkras	Federpendal
Q	
Ī	
L	
C	
Eu= 1/20 Q2	
= 1/2 C U2	
$E_{n} = \frac{1}{2} L_{1}^{2}$	
2	

$$s(t) = s \cdot s = (-t)$$

<-- 16.6.2012