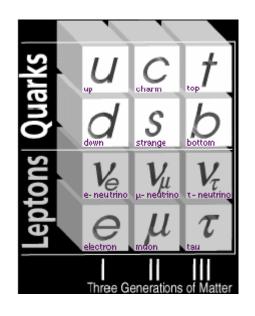
Wie erhalten Teilchen Masse? Higgs-Suche

Markus Backes 21. Juni 2004


Überblick

- Theorie
 - Warum Higgs-Theorie?
 - Higgs-Mechanismus
- Higgs-Physik an den großen Beschleunigern
 - LEP
 - Tevatron
 - LHC

Theorie: Higgs-Mechanismus

Standardmodell

Bausteine der Materie:

WW und ihre Austauschteilchen:

elektromagnetisch Photon stark Gluon schwach W-, Z-Bosonen

Standardmodell: keine Masse, ABER:

experimentell: Fermionen / W-, Z-Bosonen massiv!

Die "Higgs-Party" (1)



Die "Higgs-Party (2)

Lagrangedichte

• Lagrangedichte $L = \frac{1}{2} (\partial_m \Phi) (\partial^m \Phi) - \frac{1}{2} m^2 \Phi^2$

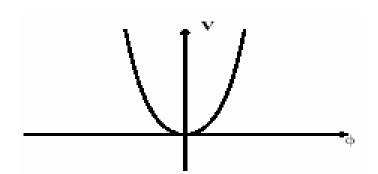
• QED:
$$L^{QED} = \overline{\Psi}(i\mathbf{g}^{m}\partial_{m} - m)\Psi + e\overline{\Psi}\mathbf{g}^{m}A_{m}\Psi - \frac{1}{4}F_{mn}F^{mn}$$

• QCD:
$$L^{QCD} = \overline{q} (i \mathbf{g}^{\mathbf{m}} \partial_{\mathbf{m}} - m) q - g (\overline{q} \mathbf{g}^{\mathbf{m}} T_a q) G_{\mathbf{m}}^a - \frac{1}{4} G_{\mathbf{m}}^a G_a^{\mathbf{m}}$$

Eichinvarianz: Terme der Form: $\frac{1}{2}m^2A_{\pmb{m}}A^{\pmb{m}}$ sind nicht erlaubt

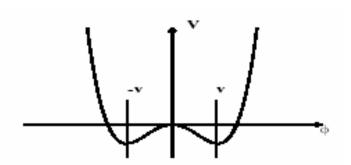
→ Photonen und Gluonen sind masselos

Eichfelder

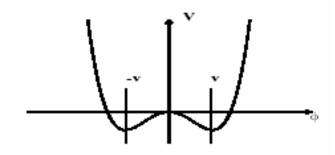

Skalares Feld Φ

$$L = \frac{1}{2} \left(\partial_{\mathbf{m}} \Phi \right)^{2} - \left(\frac{1}{2} \mathbf{m}^{2} \Phi^{2} + \frac{1}{4} \mathbf{I} \Phi^{4} \right) \quad ; \quad \mathbf{I} > 0$$

Verlange Spiegelsymmetrie: $f \rightarrow -f$


Fall 1: $\mu^2 > 0$:

- skalares Feld mit Masse μ
- Selbstwechselwirkung
- Grundzustand $\Phi = 0$



Fall 2: μ^2 < 0:

- ,Massenterm hat falsches Vorzeichen
- Grundzustand $\frac{\partial V}{\partial \Phi} = \Phi(\mathbf{m}^2 + \mathbf{1}\Phi^2) = 0$ 2 stabile Minima $\Phi = \pm v$ mit $v = \sqrt{\frac{-\mathbf{m}^2}{1}}$

spontane Symmetriebrechung

entwickle um Minimum:

$$\Phi(x) = v + h(x)$$

$$L' = \frac{1}{2} \left(\partial_{\mathbf{m}} \mathbf{h} \right)^2 - \mathbf{l} v^2 \mathbf{h}^2 - \frac{1}{4} \mathbf{l} \mathbf{h}^4 + const.$$

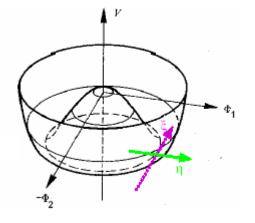
Massenterm:
$$m_h = \sqrt{2Iv^2} = \sqrt{-2m^2}$$

Brechung einer globalen Eichsymmetrie(1)

Betrachte komplexes skalares Feld $\Phi = \Phi_1 + i\Phi_2 / \sqrt{2}$

Globale U(1) Eichsymmetrie: $\Phi \rightarrow e^{ia}\Phi$

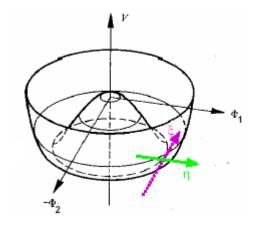
Lagrangedichte
$$L = (\partial_m \Phi)^* (\partial^m \Phi) - m^2 \Phi^* \Phi - I (\Phi^* \Phi)^2$$


Fall1: $\lambda > 0$, $\mu^2 > 0$ wie vorher

Fall2: $\lambda > 0$, $\mu^2 < 0$

setze ein:
$$L = \frac{1}{2} (\partial_{\mathbf{m}} \Phi_{1})^{2} + \frac{1}{2} (\partial^{\mathbf{m}} \Phi_{2})^{2} - \frac{1}{2} \mathbf{m}^{2} (\Phi_{1}^{2} + \Phi_{2}^{2}) - \frac{1}{4} \mathbf{I} (\Phi_{1}^{2} - \Phi_{2}^{2})^{2}$$

Minima: $\Phi_1^2 + \Phi_2^2 = v^2$ mit $v^2 = -\frac{m^2}{l}$


→ Lösung ist Kreis

Brechung einer globalen Eichsymmetrie(2)

wähle:
$$\Phi_1 = v$$
 und $\Phi_2 = 0$

dann
$$\Phi(x) = \sqrt{\frac{1}{2}} [v + h(x) + ix(x)]$$

$$L' = \frac{1}{2} (\partial_{\mathbf{m}} \mathbf{x})^{2} + \frac{1}{2} (\partial^{\mathbf{m}} \mathbf{h})^{2} + \mathbf{m}^{2} \mathbf{h}^{2} + konst. + kubische / quartische Terme in \mathbf{x}, \mathbf{h}$$

Massenterm:
$$-\frac{1}{2}m_h^2h^2 = m^2h^2 \Rightarrow m_h = \sqrt{-2m^2}$$

nur kinematischer Term

→ masseloses Goldstone-Boson

Der Higgs-Mechanismus (1)

spontane Brechung einer lokalen U(1) Eichsymmetrie:

lokale U(1) Eichsymmetrie: $\Phi \rightarrow e^{ia(x)}\Phi$

$$L = \left(\partial^{m} + ieA^{m}\right)\Phi^{*}\left(\partial_{m} - ieA_{m}\right)\Phi - m^{2}\Phi^{*}\Phi - l\left(\Phi^{*}\Phi\right)^{2} - \frac{1}{4}F_{mn}F^{mn}$$

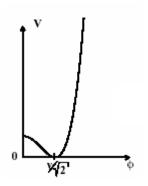
Fall1: $\lambda > 0$, $\mu^2 > 0$ ähnlich der QED Lagrangedichte

Fall2:
$$\lambda > 0$$
, $\mu^2 < 0$ mit $\Phi(x) = \sqrt{\frac{1}{2}} [v + h(x) + ix(x)] \cong \sqrt{\frac{1}{2}} (v + h) \exp\left(\frac{ix}{v}\right)$

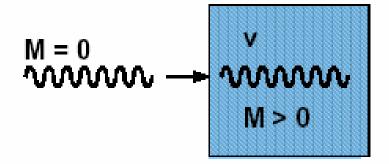
wähle $\Theta(x)$ so, daß h(x) reell ist

$$\Phi \rightarrow \sqrt{\frac{1}{2}} (v + h(x)) \exp\left(\frac{i\Theta(x)}{v}\right)$$

$$A_{\mathbf{m}} \rightarrow A_{\mathbf{m}} + \frac{1}{ev} \partial_{\mathbf{m}} \Theta$$


Der Higgs-Mechanismus (2)

$$L'' = \frac{1}{2} (\partial_{m} h)^{2} - I v^{2} h^{2} + \frac{1}{2} e^{2} v^{2} A_{m}^{2} - I v h^{3} - \frac{1}{4} I h^{4}$$
Massenterm des Vektorteilchens A_m m_A=ev


Kinemat. und Massenterm des massiven skalaren Teilchens h m_h= $\sqrt{2Iv^{2}}$

dadurch Massenterm für Vektorbosonen erzeugt aber auch für massives Higgs-Boson!

Massen im Higgs-Mechanismus

Grundzustand $v/\sqrt{2} \neq 0$

Masse = Wechselwirkungsenergie von Eichbosonen/Fermionen mit Higgs-Feld

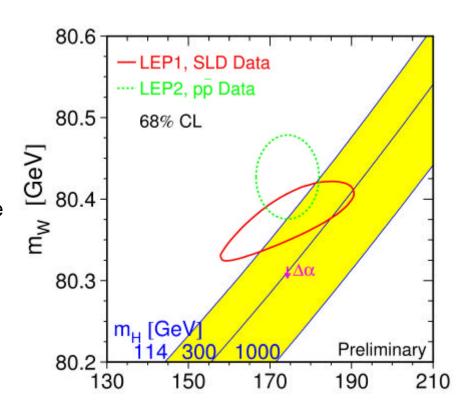
$$\begin{array}{rcl} M_W^2 &=& \frac{1}{4}g^2v^2 \\ M_Z^2 &=& M_W^2/\cos^2\Theta_W \\ m_f &=& g_fv/\sqrt{2} \end{array}$$

Massengrenzen(1)

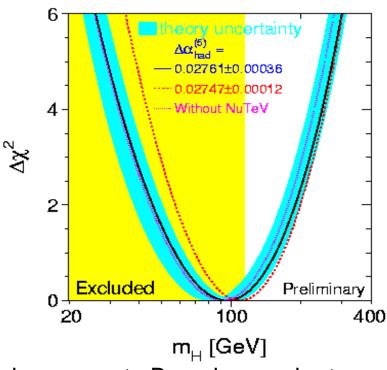
Forderung aus Unitarität:
$$-\frac{G_F M_H^2}{4\sqrt{2}p} \le \frac{1}{2}$$

Damit:
$$M_H^2 \le \frac{2\sqrt{2p}}{G_E} \le (850GeV)^2$$

Untergrenze ist bei ~7 GeV gegeben, da sonst die Quantenkorrekturen zum Higgs-Potential wichtiger würden als das Potential selber

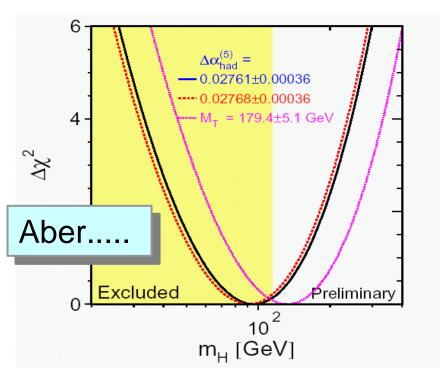

Theorie: $7GeV \le M_H \le 850GeV$

Massengrenzen(2)


andere Möglichkeit der Massenabschätzung durch Strahlungskorrekturen m_H abhängig von m_t

jedoch nicht sehr sichere Grenze, da kleine Änderungen der top-Masse große Sprünge in den Higgs-Massengrenzen verursachen

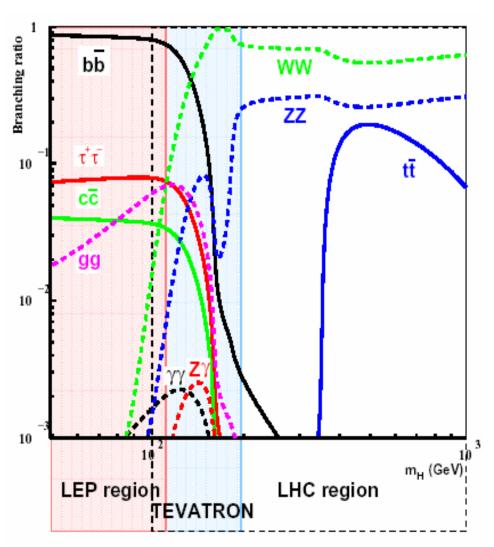
zur Zeit: m_H < 283 GeV



Massengrenzen(3)

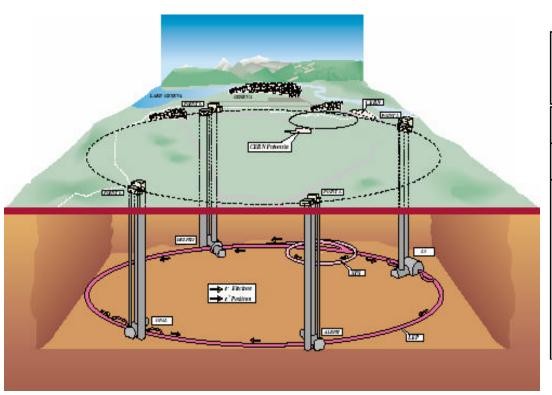
ohne neueste Berechnung der top-Masse

M_{Higgs} < 219 GeV @ 95% CL

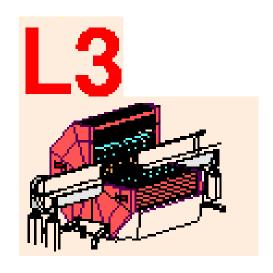


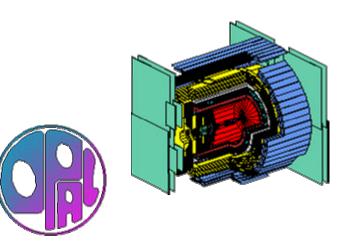
Top-Masse erhöht sich um 1 σ auf 179+-5.1 GeV

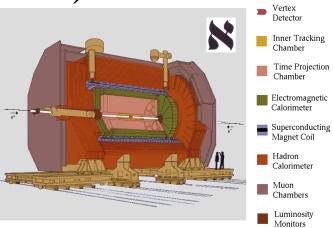
Grenzen von M_{higgs} steigen stark an: min. 96→126 GeV, limit 219→283 GeV


Higgs-Zerfallskanäle

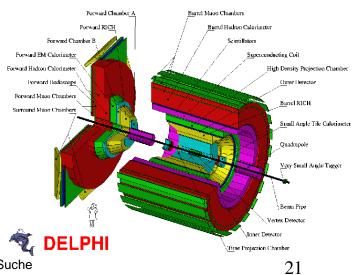
Higgs-Kopplung proportional zu Masse: Higgs zerfällt immer in kinematisch schwerstmögliches Teilchenpaar

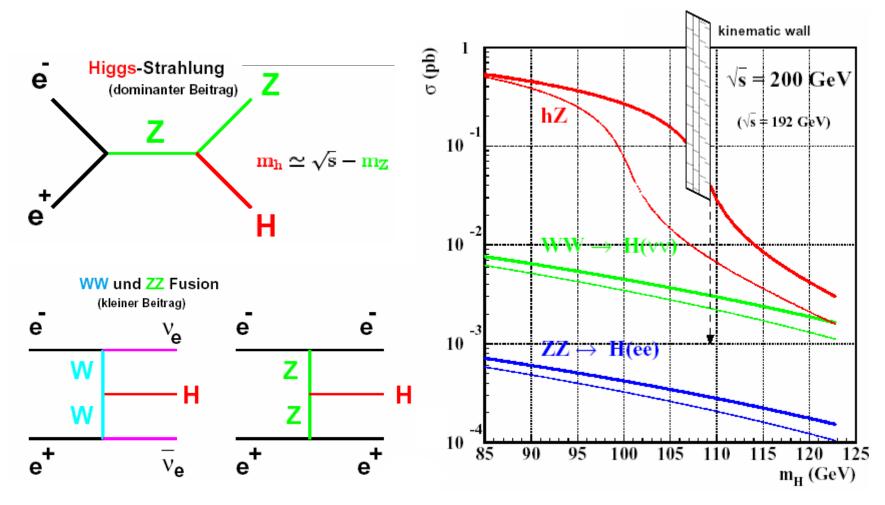

Higgs-Physik am LEP


LEP (Anlage)

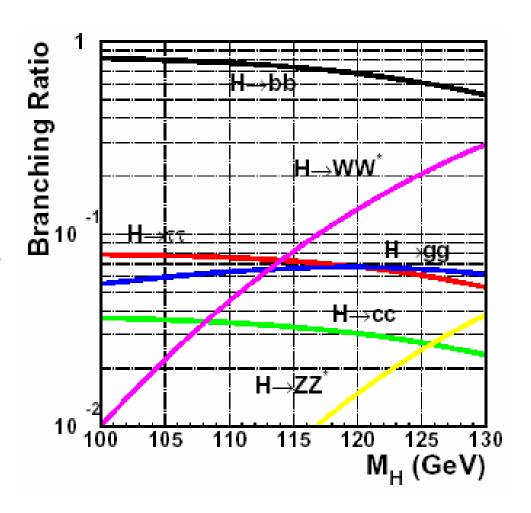


Stage	$\sqrt{ m s}$ (GeV)	Year	$\int \mathcal{L}$ /exp.
			(pb^{-1})
LEP1	≈ 91	1989-95	175
LEP1.5	130-140	1995	5
	161-172	1996	20
LEP2	183	1997	55
	189	1998	180
	192-202	1999	230
	202-209	2000	220


LEP (Detektoren)



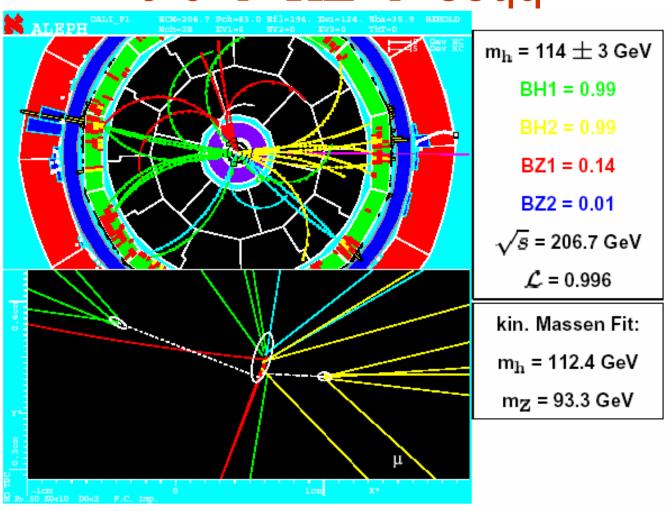
The ALEPH Detector



Higgs-Produktion

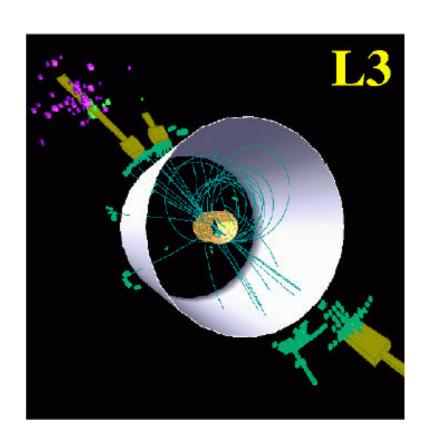
Higgs-Zerfälle

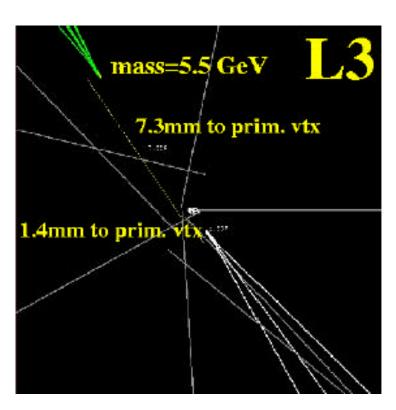
- low m_H:
 Zerfall in bb
- high m_H:
 Zerfall in ZZ*/WW* → 4 leptons


Higgs-Kandidaten

- 4-jet: e+e-→ HZ → bbqq
- E-miss: e⁺e⁻ → HZ → bbvv
- Tau: $e^+e^- \rightarrow HZ \rightarrow bb\tau^+\tau^- / \tau^+\tau^-qq$
- Lept: e⁺e⁻ → HZ → bbe⁺e⁻ / bbμ⁺μ⁻

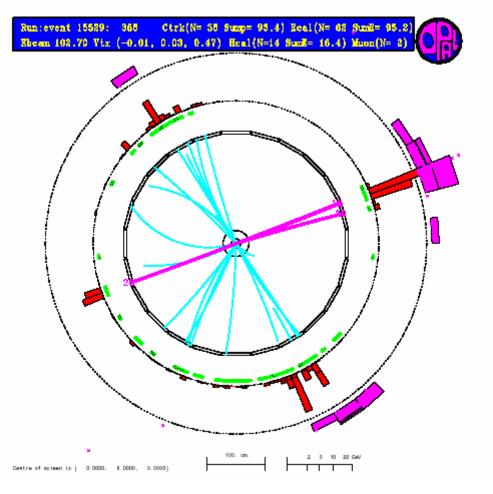
	Expt	Suchkanal	$M_H^{ ext{resc}}$ (GeV)	ln(1+a/b)
			,	@ 115 GeV
1	Aleph	4-jet	114.3	1.73
2	Aleph	4-jet	112.9	1.21
3	Aleph	4-jet	110.0	0.64
4	L3	E-miss	115.0	0.53
5	Opal	4-jet	110.7	0.53
6	Delphi	4-jet	114.3	0.49
7	Aleph	Lept	118.1	0.47
8	Aleph	Tau	115.4	0.41
9	Aleph	4-jet	114.5	0.40
10	Opal	4-jet	112.6	0.40
11	Delphi	4-jet	97.2	0.36
12	L3	4-jet	108.3	0.31
13	Aleph	4-jet	114.4	0.27
14	Aleph	4-jet	103.0	0.26
15	Opal	E-miss	104.0	0.25
16	Aleph	4-jet	110.2	0.22
17	L3	E-miss	110.1	0.21
18	Opal	E-miss	112.1	0.20
19	Delphi	4-jet	110.1	0.20
20	L3	E-miss	110.1	0.18


4-jet-Kandidat; ALEPH;


$e^+e^- \rightarrow HZ \rightarrow bbqq$

E_T-miss-Kandidat; L3

$$e^+e^- \rightarrow HZ \rightarrow bbvv$$



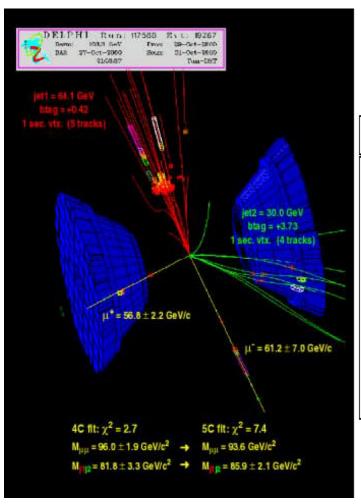
measured H-mass: 114,4 GeV

τ-Kandidat; OPAL

$e^+e^- \rightarrow HZ \rightarrow bb\tau^+\tau^- / \tau^+\tau^-qq$

17.September

$$m_h = 105.3 \text{ GeV}$$


$$m_{\tau\tau} = 90.7 \text{ GeV}$$

$$B$$
-tag(1) = 0.9776

$$B$$
-tag(2) = 0.7492

$$\sqrt{s} = 205.3 \, \text{GeV}$$

Lepton-Kandidat; DELPHI $e^+e^- \rightarrow HZ \rightarrow bbe^+e^-/bb\mu^+\mu^-$

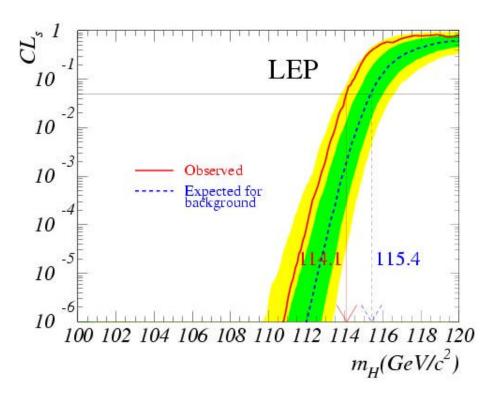

```
HZ 
ightarrow b \overline{b} \mu^+ \mu^- Kandidat

m_h (4C) = 81.8 \pm 3.3 \text{ GeV}

m_{\mu\mu} (4C) = 96.0 \pm 1.9 \text{ GeV}

m_h (5C) = 85.9 \pm 2.1 \text{ GeV}

m_{\mu\mu} (5C) = 93.6 \text{ GeV}


B-tag(1) = 0.42 (5 Spuren)

S-tag(2) = 3.73 (4 Spuren)

\sqrt{s} = 206.6 \text{ GeV}
```

Ergebnisse von LEP

- 2461 pb⁻¹ gesammelte LEP-Daten (536 pb⁻¹ oberhalb 206 GeV)
- offiziell kein Higgs entdeckt

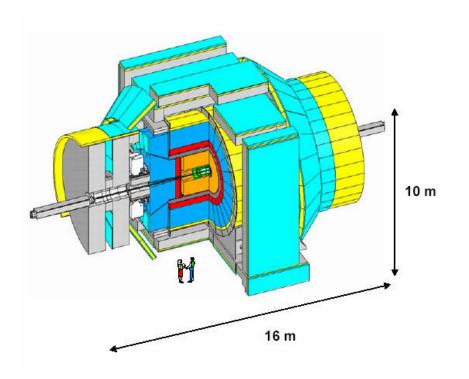
LEP's letztes Wort (2003):

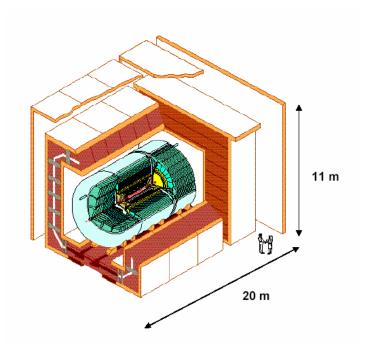
Massengrenzen

- observed m_H > 114.4 GeV
- expected m_H > 115.3 GeV

Higgs-Physik am Tevatron

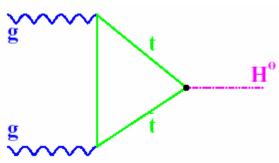
Tevatron (Anlage)

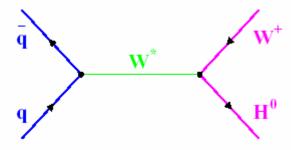


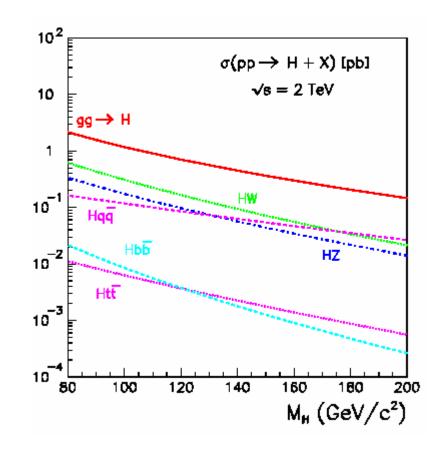

$$Run - I : \sqrt{s} = 1.8 TeV$$

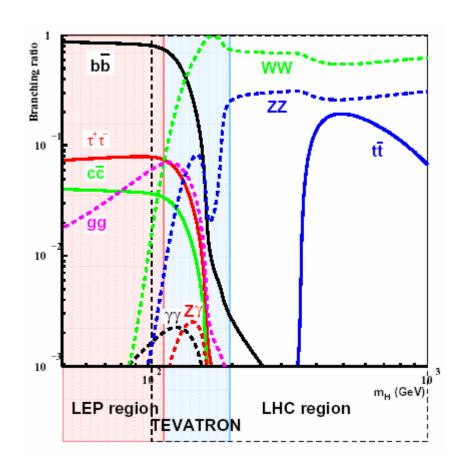
$$Run - II : \sqrt{s} = 1.96 TeV$$

Tevatron (Detektoren)


CDF: D0:

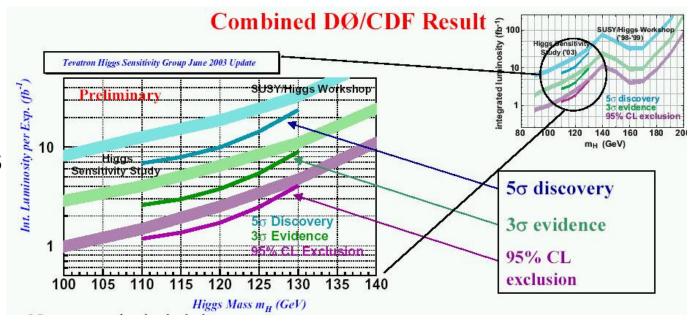



Higgs-Produktion


assoziierte Produktion

Higgs-Zerfälle

- m_H < 135 GeV: Zerfall in bb aber: hoher QCD-Untergrund, daher Suche (fast) unmöglich!
- m_H > 135 GeV: Zerfall in Eichbosonen

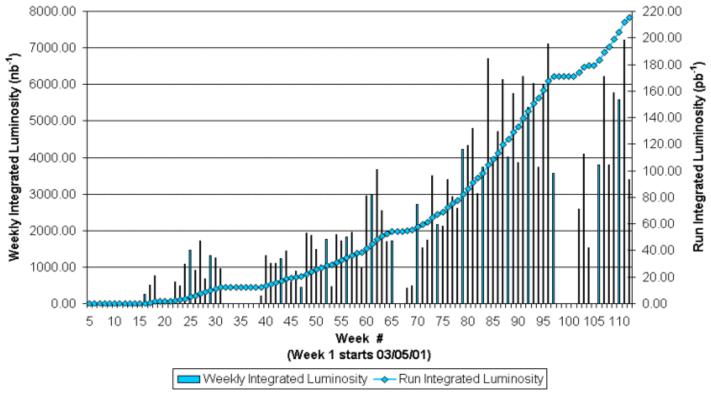

Planung für Run II

- Nutzung des steigenden H →WW^(*) Verzweigungsverhältnisses
- Nutzung des großen gg → H Wirkungsquerschnittes
- Suche in Kanälen wie
 - VH → ZWW^(*) / WWW^(*)
 - pp → HX → WW(*)X → |v|'v'
- Profitieren von verbesserten Detektoren

Erwartungen aus Tevatron Run II

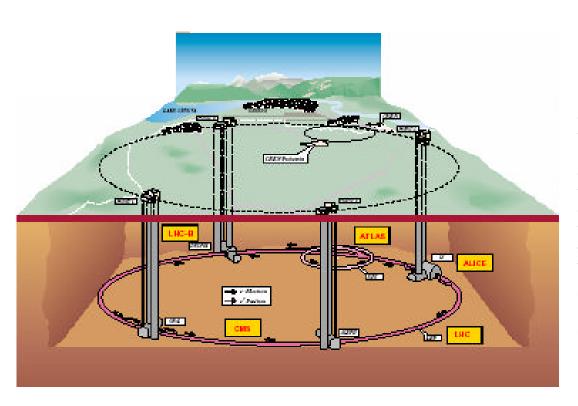
- 95% CL bis ~185 GeV mit 10 fb⁻¹
- 3σ Beobachtung bis
 ~180 GeV mit 20 fb⁻¹
- 5σ Entdeckung bis ~125
 GeV mit 30 fb⁻¹
- zur Zeit (Mai 2004):

int. Lum. von 0,5 fb⁻¹


integrierte Luminosität

Luminosität

Run-II Ziel: 3 - 4*10³² cm⁻² s⁻¹


Run-II maximum: 4.1*10³¹ cm⁻² s⁻¹ (to date)

Run-I maximum: 2.4*1031 cm-2 s-1

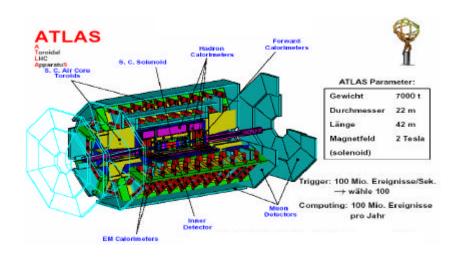
Higgs-Physik am LHC

LHC (Anlage)

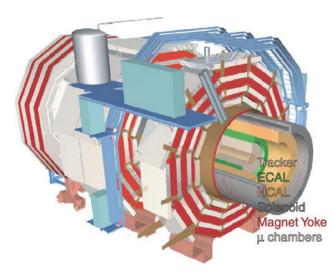
Proton-Proton 2835*2835

bunches

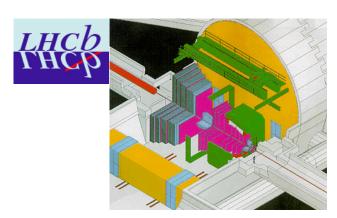
Protons/bunch 10¹¹

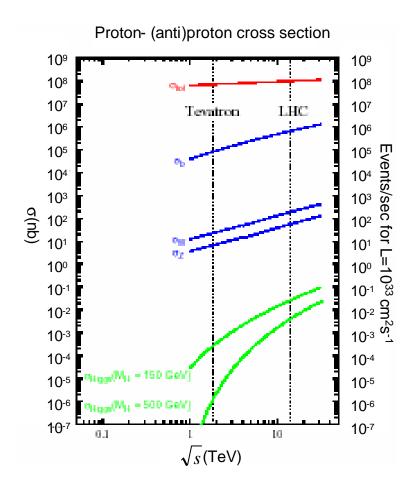

Beam energy 7 TeV

Luminosity $10^{34} \,\mathrm{cm}^{-2}\mathrm{s}^{-1}$


Crossing rate 40 MHz

Collisions $\sim 10^7 - 10^9 \text{ Hz}$

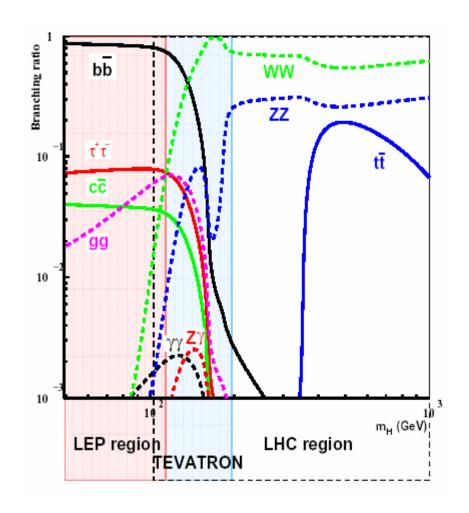

LHC (Detektoren)



Higgs-Produktion

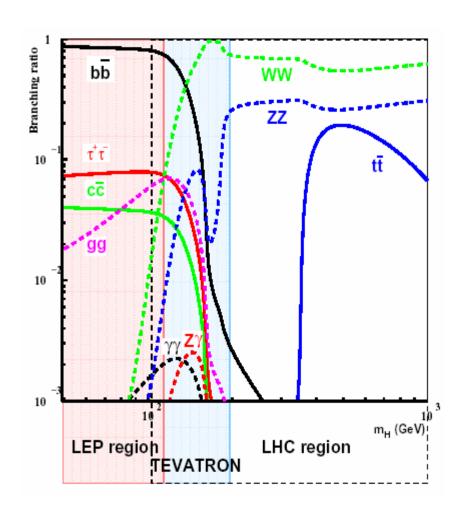
	m _H klein	m _H groß	100 _E
dominant	Gluon-Gluon-Fusion	q q H q Vektorboson-Fusion	$p + p \rightarrow H + X \qquad \sqrt{s} = 14 \text{ TeV}$ $\text{CTEQ2L} \qquad 10^6$ $m_1 = 74 \text{ GeV}$ $m_1 = 10^4$ $m_1 = 10^4$ $m_1 = 10^4$
~50mal kleiner	assoziierte ttH-Prod.	Assoziierte WH/ZH-Prod.	.001 10 ³ 10 ³ 10 ² 10 ² 10 ² M _H (GeV"

Wirkungsquerschnitte


Vorteil des LHC:
 Wirkungsquerschnitt des
 Higgs steigt mit
 wachsendem√s stärker
 als Untergrund

Higgs-Zerfälle

- $m_H < 2m_Z$:
 - H $\rightarrow \gamma \gamma$
 - $ttH \rightarrow lvbb + X$
 - $H \rightarrow ZZ^* \rightarrow 41$
 - H → WW* → lvlv
 - WH → WWW* → lvlvlvl±l±vvjj
- $m_H > 2m_Z$:
 - H → ZZ → 4I
 - H → ZZ → IIvv
 - H → ZZ → IIjj
 - H→WW→lvjj
- Dominanz vollkommen hadronischer Endzustände, diese können aber nicht vom QCD-Untergrund separiert werden.

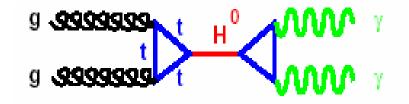

 $\sigma(H \rightarrow bb) \sim 20 \text{ pb}; \sigma(bb) \sim 500 \text{ }\mu b$

Higgs-Zerfälle

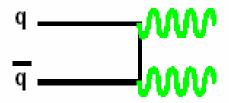
- $m_H < 2m_Z$:
 - H → γγ
 - ttH \rightarrow lvbb + X
 - H → ZZ* → 41
 - H → WW* → IvIv
 - WH → WWW* → lvlvlvl±l±vvjj
- $m_H > 2m_Z$:
 - H → ZZ → 4I
 - H → ZZ → IIvv
 - H → ZZ → IIjj
 - H→WW→lvjj
- Dominanz vollkommen hadronischer Endzustände, diese können aber nicht vom QCD-Untergrund separiert werden.

 $\sigma(H \rightarrow bb) \sim 20 \text{ pb}; \sigma(bb) \sim 500 \text{ }\mu b$

$H \rightarrow \gamma \gamma$

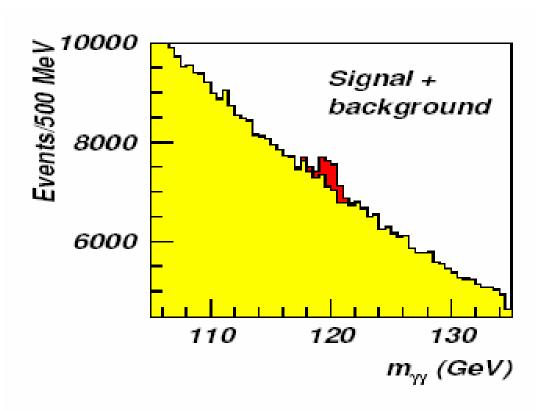

$$\frac{s(gg)}{s(H \to gg)} \approx 60$$

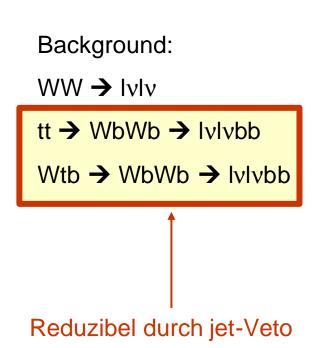
- @ $m_H = 120 \text{ GeV}$
- \rightarrow brauche $\sigma(m_H)/m_H < 10\%$

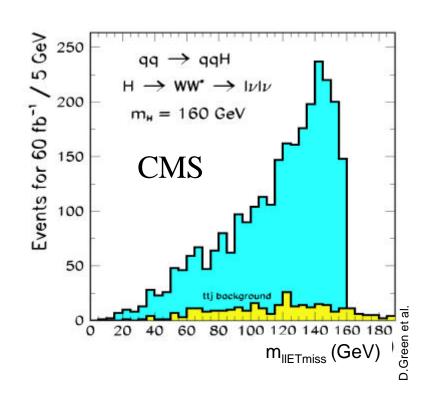

gutes EM-Cal. Benötigt!

1% soll erreicht werden am CMS
durch PbWO4-Kristallkalorimeter
bei 100 GeV < m_H < 150 GeV

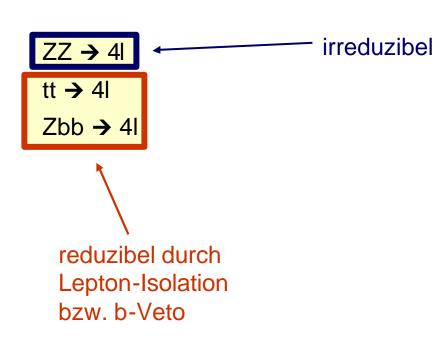
Signal:

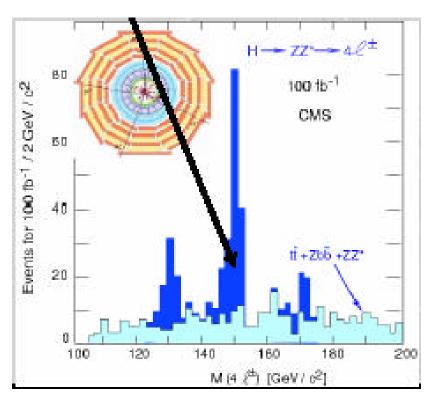

Background:


$H \rightarrow \gamma \gamma$

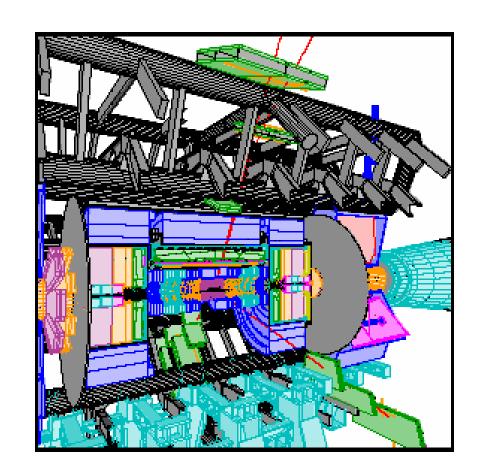

großer Background, aber: irreduzibel!

→ schwierige Identifizierung!


$H \rightarrow WW^* \rightarrow lvlv$



$H \rightarrow ZZ \rightarrow 4$ leptons


geringer Background:

$H \rightarrow ZZ \rightarrow 4$ leptons

Simulierter Event im ATLAS-Detektor mit 4 Myonen

Entdeckungspotential

ATLAS:

ATLAS Experiment, 30 fb -1

**H → 77

**UH → 179, Weblatte

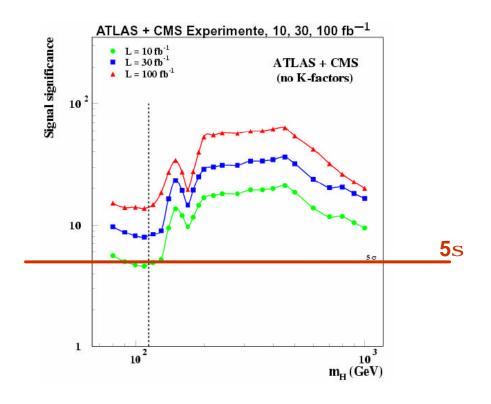
**No k—factors

**AULAS Experiment, 30 fb -1

**H → 77

**UH → 180

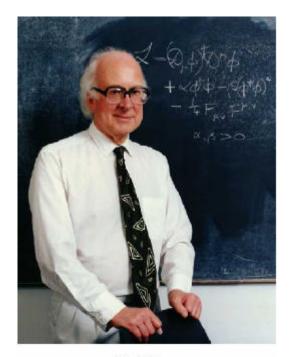
**UH → 190


**

(no K-factors)

mH (GeV)

Entdeckungspotential


- Entdeckung mit 5σ Signifikanz schon bei 10 fb⁻¹
- schnellere Entdeckung bei größeren Massen bis 600 GeV
- aber: es wird dauern, bis 10 fb⁻¹ Daten genommen sind (Kalibration/Verständnis der Detektoren)
- Abdeckung des gesamten
 Massenbereichs:
 LHC findet Higgs oder schließt es aus!

Zitat

"Falls ich noch am Leben sein sollte, wenn ein Higgs-Boson gefunden wird, vielleicht im Jahre 2004, würde ich vielleicht gerne zur Pressekonferenz eingeladen werden."

P. Higgs

P. Higgs

...Ende...